

Draft NISTIR 8176 1
 2

Security Assurance Requirements for 3

Linux Application Container 4

Deployments 5

 6

Ramaswamy Chandramouli 7
 8

 9

 10

 11

 12

 13

 14

Draft NISTIR 8176 15

 16

Security Assurance Requirements for 17

Linux Application Container 18

Deployments 19

 20

Ramaswamy Chandramouli 21
Computer Security Division 22

Information Technology Laboratory 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34

August 2017 35
 36
 37

 38
 39
 40

U.S. Department of Commerce 41
Wilbur L. Ross, Jr., Secretary 42

 43
National Institute of Standards and Technology 44

Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology 45

National Institute of Standards and Technology Internal Report 8176 46
36 pages (August 2017) 47

 48

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 49
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 50
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 51
available for the purpose. 52
There may be references in this publication to other publications currently under development by NIST in accordance 53
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 54
may be used by federal agencies even before the completion of such companion publications. Thus, until each 55
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 56
planning and transition purposes, federal agencies may wish to closely follow the development of these new 57
publications by NIST. 58
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 59
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 60
http://csrc.nist.gov/publications. 61

 62
Public comment period: August 01, 2017 through August 25, 2017 63

National Institute of Standards and Technology 64
Attn: Computer Security Division, Information Technology Laboratory 65

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 66
Email: NISTIR8176@nist.gov 67

All comments are subject to release under the Freedom of Information Act (FOIA). 68

 69

http://csrc.nist.gov/publications

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

ii

Reports on Computer Systems Technology 70

The Information Technology Laboratory (ITL) at the National Institute of Standards and 71
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 72
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 73
methods, reference data, proof-of-concept implementations, and technical analyses to advance the 74
development and productive use of information technology. ITL’s responsibilities include the 75
development of management, administrative, technical, and physical standards and guidelines for 76
the cost-effective security and privacy of other than national security-related information in federal 77
information systems. 78

 79

Abstract 80

Application Containers are slowly finding adoption in enterprise IT infrastructures. Security 81
guidelines and countermeasures have been proposed to address security concerns associated with 82
the deployment of application container platforms. To assess the effectiveness of the security 83
solutions implemented based on these recommendations, it is necessary to analyze them and 84
outline the security assurance requirements they must satisfy to meet their intended objectives. 85
This is the contribution of this document. The focus is on application containers on a Linux 86
platform. 87

 88

 89

Keywords 90

application container; capabilities; Cgroups; container image; container registry; kernel loadable 91
module; Linux kernel; namespace; Trusted Platform Module. 92

 93

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

iii

Acknowledgements 94

 95

 96

 97

 98

 99

 100

 101

Audience 102

The target audience for this document includes system architects and system administrators for 103
container stacks in enterprise infrastructures or in infrastructures used for offering container 104
service as part of an overall cloud service. 105

 106

Trademark Information 107
All registered trademarks or trademarks belong to their respective organizations. 108

 109

 110

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

iv

Executive Summary 111

Application containers are now slowly finding adoption in production environments due to the 112
following advantages: short development and deployment cycle, resource efficiency through 113
lightweight virtualization, and availability of tools for automating the processes involved. At the 114
same time, security concerns are dictating the pace of adoption. To address these concerns, 115
security guidelines and countermeasures have been proposed by NIST through the Application 116
Container Security Guide (NIST Special Publication 800-190). 117

The Application Security Guide identified security threats to the components of the platform 118
hosting the containers and related artifacts involved in building containers and storing them prior 119
to launch. Taking into consideration the overall security implications for the entire ecosystem 120
involving containers, the document also provided security countermeasures for and through six 121
entities including Hardware, Host OS, Container Runtime, Image, Registry and Orchestrator. 122

To carry out these recommendations in the form of countermeasures, one or more security 123
solution are needed. In order for these security solutions to effectively meet their security 124
objectives, it is necessary to analyze those security solutions and detail the metrics they must 125
satisfy in the form of security assurance requirements. This is the objective and contribution of 126
this document. 127

Linux and its various distributions form the predominant host OS component of the deployed 128
container platforms. Since they are open-source products, sufficient security related information 129
is available to analyze the security solutions that can be configured using features provided by 130
Linux. Hence the focus of this document is on security assurance requirements for security 131
solutions for application containers hosted on Linux. The target audience includes system 132
security architects and administrators who are responsible for the actual design and deployment 133
of security solutions in enterprise infrastructures hosting containerized hosts. 134

 135

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

v

 136

Table of Contents 137

Executive Summary ... iv 138

1 Introduction .. 1 139

1.1 Scope of the Document .. 1 140

1.2 Document Structure .. 3 141

2 Security Solutions for Linux Application Container Stack 5 142

2.1 Linux Kernel Feature – Namespaces .. 5 143

2.2 Linux Kernel Feature – Cgroups ... 5 144

2.3 Linux Kernel Feature – Capabilities .. 6 145

2.4 Kernel Loadable Modules (or Linux Security Module or LSM) 6 146

2.5 Application Container Security Configuration Process 6 147

3 Hardware-based Security Solutions for Containers ... 7 148

3.1 vTPM in the host OS Kernel – Security Assurance Requirements 7 149

3.2 vTPM in a dedicated Container – Security Assurance Requirements 8 150

3.3 Leveraging Trusted Execution Support of Hardware 9 151

4 Assurance Requirements for Host OS Protection .. 10 152

4.1 Requirements for Generic Host OS Protection ... 10 153

4.2 Assurance Requirements for Host OS Protection for Container Escape 10 154

5 Assurance Requirements for Container Runtime Configuration 12 155

5.1 Requirements for Secure Connection ... 12 156

5.2 Requirements for Isolation-based Configurations ... 12 157

5.2.1 Process Isolation for Containers ... 12 158

5.2.2 Filesystem Isolation for Containers ... 13 159

5.2.3 IPC Isolation for Containers .. 14 160

5.2.4 Network Isolation for Containers .. 14 161

5.2.5 User and Group-level Isolation for Containers 16 162

5.3 Requirements for Resource Limiting Solutions ... 16 163

5.4 Requirements for Least Privilege Configuration for Containers 17 164

5.5 Requirements for Device Isolation solutions ... 17 165

5.6 Requirements for Container Launching Options ... 19 166

6 Assurance Requirements for Image Integrity Solutions 22 167

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

vi

7 Assurance Requirements for Image Registry Protection 23 168

8 Assurance Requirements for Orchestration Functions 24 169

9 Adverse Side effect of some Security Solutions ... 25 170

9.1 Resource Limiting using Cgroups ... 25 171

9.2 Syscall filters using Seccomp ... 25 172

10 Summary and Conclusions ... 26 173
 174

 175
List of Appendices 176

Appendix A— Acronyms .. 277 177

Appendix B— References .. 288 178

 179

List of Figures 180

Figure 1 – Container Technology Stack .. 2 181

Figure 2 – vTPM Implemented in a Kernel Module ... 8 182

Figure 3 – vTPM located in a dedicated Container ... 9 183

 184

List of Tables 185

Table 1– Linux Resource Control using Cgroups .. 17 186

Table 2 – Prohibited Options for Container Launching .. 19 187

 188

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

1

1 Introduction 189

Application containers are now slowly finding adoption in production environments due to the 190
following advantages: short development and deployment cycle, resource efficiency through 191
lightweight virtualization, and availability of tools for automating the processes involved. To 192
address the security concerns in these environments, the Application Container Security Guide 193
(NIST Special Publication 800-190) [1] (referred to in the rest of this document as Container 194
Security Guide) identified security threats to the components of the platform hosting the 195
containers as well as related artifacts involved in building containers and storing them prior to 196
launch. Taking into consideration the overall security implications for the entire ecosystem 197
involving containers, the document also provided security countermeasures for and through six 198
entities including Hardware, Host OS, Container Runtime, Image, Registry and Orchestrator. 199

To implement these countermeasures, one or more security solutions are needed. This document 200
discusses potential security solutions that provide the functionality necessary in countermeasures 201
and the kind of security assurance requirements each should satisfy. These security solutions can 202
be broadly classified as: 203

(a) Hardware-based root of trust providing integrity for boot process 204

(b) Configuration options using host OS kernel features and kernel loadable modules 205

(c) Protection measures for building and storing container images 206

(d) Configuration options in Orchestrator tools used for rolling out a production 207
infrastructure that involves multiple containers and multiple hosts 208

 209
The purpose of this document is to examine each of the security solutions in the context of the 210
security objectives they are designed to meet and to develop assurance requirements that they 211
should satisfy in order to be effective. The host OS considered is Linux due to the following: 212

(a) Ubiquitous adoption in container stacks 213

(b) Linux distributions are open-source and allow for sufficient security related information 214
to be made publicly available 215

 216
1.1 Scope of the Document 217

The functional architecture diagram of a container technology stack is shown in figure 1. In this 218
diagram, the stack is comprised of the Physical Host (or VM), Container OS (which we will refer 219
to as Host OS in this document), Container Runtime, and the multiple containers. Additionally, 220
tasks such as creating a virtual network linking containers within and across container hosts 221
(Container Networking), creating clusters of container hosts (Container Cluster Management), 222
creating pathway programs to identify and discover a specific container providing a particular 223
service (Service Discovery), scheduling of containers across a cluster (Container Scheduling), 224
and scheduling of specific business applications within various containers (Application 225
Scheduling) that are all performed by multiple tools are incorporated under the umbrella of an 226
Orchestrator software. Before actually launching them as containers on various container hosts, 227

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

2

templates of components that constitute a container called Container Image are created using 228
various DevOps Tools. These container images are stored in a container registry (Image 229
Management) and are then pulled into container hosts and launched as containers using 230
Container Runtime tools. The container runtime also provides the interfaces for configuring host 231
OS parameters and settings associated with kernel-loadable modules to enable secure 232
deployment of various containers. 233

 234

Figure 1 – Container Technology Stack 235

 236
• As depicted in figure 1, the security functional layer spans all functional layers of the 237

container technology stack. The security solutions covering these layers, however, must 238
be implemented through the following components: 239

(a) Physical Host (i.e., hardware, since container hosting on VMs is out of scope for 240
this document) 241

(b) Container OS (Host OS) interfaces 242

(c) Container Runtime interfaces 243

(d) Image Management and Registry Interfaces 244

(e) Orchestrator Interfaces 245

The containers running in the container stack can either be system containers or application 246
containers. A container that behaves like a full OS and runs programs such as sshd (secure 247
session establishment) and syslogd (logging capability) is called a system container, while one 248
that runs only an application is called an application container [2]. This document focuses on 249
application containers. Before analyzing the security solutions and identifying the assurance 250

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

3

requirements they should satisfy, it is necessary to state the execution model of the application 251
containers and the assumed attack model. First, the application is run within a container as a 252
single operating system process. The container has a copy of the application code itself as well as 253
the software stack (consisting of binaries and libraries) [3]. In most cases, this stack can be 254
assembled using some type of library system, avoiding the need for the developer to build and 255
configure the stack from scratch. These quickly assembled stacks are given different names in 256
different container product offerings (e.g., buildpacks, cartridges, etc.). There are stacks for 257
many of the popular programming language runtimes such as Java, PHP, Node.js, and Ruby. For 258
specialized applications, developers can create their own customized stack. The deployment 259
model in a container architecture may involve running copies of the same application in parallel 260
with separate containers, even those spread across different container hosts. In this scenario, the 261
infrastructure may have a mechanism to distribute incoming requests across all instances of the 262
same application using some form of load balancer. 263

The attack model assumed here is that the vulnerability in the application code of the container 264
or its faulty configuration (e.g., the container is configured to run in privileged mode) has been 265
exploited by an attacker to take control of and compromise the privilege code in container 266
runtime and host OS kernel where the latter is trusted by the application code in the container to 267
provide some protection guarantees such as process isolation [4]. An example of such an attack 268
is the replaying, recording, modifying, and dropping of a network packet or a file system access. 269
The security solutions discussed in this document are intended to protect the container runtime 270
and host OS against these types of attacks. Solutions to address the inherent insecure 271
characteristics of the application code itself, such as programming bugs, design flaws or 272
execution models, are beyond the scope of this document. 273

1.2 Document Structure 274

The remainder of this document is organized into the following sections and appendices: 275

 Section 2 provides an overview of the functions of various Linux kernel features 276
(Namespaces, Cgroups, Capabilities) and kernel loadable modules in providing security for 277
the containerized stack; 278

 Section 3 discusses hardware-based security solutions for container environments; 279

 Section 4 outlines host OS protection measures and their associated assurance requirements; 280

 Section 5 presents, in detail, several container runtime configuration solutions that guarantee 281
container isolation for artifacts such as processes, filesystems, IPC, and networks. It also 282
presents solutions for limiting resources and ensuring least privilege. All solutions are 283
analyzed, and a set of assurance requirements that must be satisfied are presented; 284

 Section 6 defines assurance requirements for building and maintaining container images; 285

 Section 7 briefly discusses assurance requirements for container registry protection; 286

 Section 8 outlines basic security assurance requirements for Orchestration tools; 287

 Section 9 identifies some undesirable side effects of some security solutions and the need to 288
exercise caution in the use of such solutions; 289

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

4

 Section 10 summarizes the various security solution areas that were covered in the document; 290

 Appendix A provides the definition for acronyms used in the document; and 291

 Appendix B contains a list of references. 292

 293

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

5

2 Security Solutions for Linux Application Container Stack 294

In section 1.1, the host OS (in this context, Linux) interfaces were listed as mechanisms for 295
implementing security solutions for a container stack. There are two types of interfaces: Linux 296
kernel interfaces and Kernel Loadable Module (or Linux Security Module or LSM) interfaces. 297
The Linux kernel features associated with the former type of interfaces are: Namespaces, 298
Cgroups, and Capabilities. Out of these, the Namespaces and Cgroups kernel features provide 299
isolation of processes running on top of the host OS and can be the driving features for 300
development of the concept of containers. The salient functions of Linux kernel features and 301
kernel-loadable module features are briefly described in the following sections to provide context 302
for the security configurations and solutions analyzed in the subsequent sections. 303

2.1 Linux Kernel Feature – Namespaces 304

Namespaces divide the identifier tables and other structures associated with kernel global 305
resources into separate instances. These partition filesystems, processes, users, network stacks, 306
Inter-process communication (IPC) objects, host names, and other components into separate 307
pieces. For example, each filesystem namespace has its own root directory and mount table [2]. 308
These distinct namespaces can then be bundled in any frequency or combination to provide a 309
unique view of resources for each container and subsequent accessibility to them. The restricted 310
view of resources for a process within a container can be extended to a child process. 311
Configuration capabilities, such as remapped root file systems and virtual network devices, are 312
some of the security solutions that can be enabled using the Namespaces feature. The assurance 313
of a security solution based on namespaces depends on the methods used to enforce namespace 314
isolation, which in turn depends on the kind of metadata associated with each namespace that 315
implements the appropriate access control. 316

The namespace concept has expanded into a general framework for isolating a range of kernel 317
global resources, the former scope of which was system-wide. Thus, the associated API has also 318
grown to include several system calls. However, there are still some resources that are not 319
namespace-aware (e.g., devices). 320

2.2 Linux Kernel Feature – Cgroups 321

Control Groups (Cgroups) are a kernel mechanism for specifying and enforcing hardware 322
resource limits and access controls to a process or a group of processes. Their goal is to prevent a 323
process from hogging all available resources and starving other processes and containers on the 324
host. Thus, Cgroups isolate and limit a given resource over a group of processes to control 325
performance or security. Controlled resources include CPU shares, RAM, network bandwidth, 326
and disk I/O [5]. It can also be used for task control. 327

The security protection provided by Cgroups are: 328

(a) Preventing Denial-of-Service Attacks: It can provide protection against denial-of-service 329
attacks preventing situations such as runaway containers by using features such as task 330
freezing via SIGSTOP, setting limits on process ID (PID) using PID Cgroup to restrict 331

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

6

the maximum number of processes per user, and specifying network control parameters 332
such as buffer limits and traffic priority levels (enforced by iptables). 333

(b) Device Integrity Protection: It can restrict access to devices using mandatory access 334
control (MAC) or using a feature that allows the specification a device whitelist. 335

The configuration of Cgroups is enabled by mounting a special Cgroup virtual filesystem 336
(pseudo-filesystem) similar to /proc or /sys that allows viewing of the state of namespaces and 337
controls. The vulnerability of this mechanism is that attacks, such as unmounting or mounting-338
over, can invalidate the resource limits set by Cgroups configurations. Cgroups can be 339
configured and managed outside of the container management frameworks since it is a 340
configuration feature purely associated with the kernel of the host OS. 341

2.3 Linux Kernel Feature – Capabilities 342

The Capabilities feature in Linux kernel helps to partition the extensive set of privileges 343
available to root so that processes (in our context, containers) can be allocated just the privileges 344
needed to perform a specific function. Prior to the introduction of the Capabilities feature, a 345
process that needs to open network sockets must be run as a root to perform this single function. 346
This meant that a bug in the corresponding binary, such as /bin/ping, could allow attackers to 347
gain all privileges for the root on the system [6]. By enabling the capability CAP_NET_RAW, a 348
version of ping can be created that has only the privileges enabled by this capability rather than 349
full root privileges. The security consequence of this is that the potential attackers would gain 350
significantly fewer privileges from exploiting the ping utility. 351
 352
2.4 Kernel Loadable Modules (or Linux Security Module or LSM) 353

Kernel Loadable Modules, as the name implies, are modules loaded into the Linux kernel and 354
provide security functions. Examples include SELinux, AppArmor, and Seccomp. SELinux and 355
AppArmor enable specification and enforcement of mandatory access control (MAC) on 356
processes and objects. Seccomp enables specification of system call restrictions, and thus 357
reduces the Linux kernel attack surface. 358
 359
2.5 Application Container Security Configuration Process 360

The Linux host OS kernel features—such as namespaces, Cgroups, and Capabilities—can be 361
leveraged to create a secure configuration for each container. Many container runtime products 362
offer APIs to create secure configurations for containers within a host. A typical container 363
runtime, generally accessed through a client, contains a library that directly makes the syscalls 364
and performs work on behalf of its client such as creating the required kernel namespaces, 365
Cgroups, and management of capabilities. Other administrative functions that may have security 366
implications (e.g., lack of availability due to uneven workloads) such as distribution of 367
containers across hosts and the creation of host clusters are managed by a set of tools called 368
Orchestrators. 369

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

7

3 Hardware-based Security Solutions for Containers 370

The Container Security Guide, under the topic of Hardware Countermeasures, recommends a 371
trusted computing model that starts with the measured/secured boot, provides a verified system 372
platform, and builds a chain of trust rooted in hardware. This chain of trust then extends to 373
bootloaders, the OS kernel, and the OS components to enable cryptographic verification of boot 374
mechanisms, system images, container runtimes, and container images. The technical solutions 375
for implementing a trusted computing module (TPM) for a containerized host are outlined in [7]. 376
Two such approaches are discussed in this document as well as the security assurance required 377
for each solution. 378

Both approaches involve a combination of hardware-based, or physical, TPM and a software-379
based vTPM (virtual TPM). The difference between the two approaches is in the location where 380
vTPM is placed in the container stack. The security solution where vTPM is placed in the Linux 381
kernel is discussed in section 3.1, and the solution where vTPM is placed in a dedicated 382
container is the topic of section 3.2. 383

Building a TPM architecture is not the only type of approach for providing trust rooted in 384
hardware for the container stack. Another type of approach that has been proposed is to leverage 385
the trusted execution support of some CPU architectures to protect processes running in a 386
container against attacks from sources inside the same container stack. This includes privileged 387
software in the same stack such as the container runtime and host OS kernel [8]. A mechanism or 388
security solution based on this type of approach is discussed and analyzed in section 3.3. 389

3.1 vTPM in the host OS Kernel – Security Assurance Requirements 390

In an architectural approach suggested in [7], a software-based module called vTPM (virtual 391
TPM) is placed into the OS kernel. To make this module available to several containers, it needs 392
to be virtualized. This is accomplished using a kernel module that provides an arbitrary number 393
of software-based vTPMs, which are exposed to containers through the usual mechanisms and 394
present a character device type interface to the container userspace. This functionality can be 395
implemented by having the container runtime (or container manager) ask the host OS kernel to 396
create a new vTPM and assign the virtual device to a container. The vTPMs are linked to the 397
TPM implemented in the hardware platform (referred to as “physical TPM”) that hosts the 398
container stack. The schematic diagram of this architectural approach is illustrated in figure 2. 399

The security assurance requirements for the above discussed architectural approach can be 400
looked at for the following scenarios: 401

The host OS is completely trusted: The trust-in-host OS can be established by extending the root 402
of trust from the hardware using the hardware-based, or physical, TPM. Since the host OS is 403
trusted to prevent unauthorized access by containers and processes, it can also be trusted to 404
prevent unauthorized access to the in-kernel vTPM. Moreover, there is the assurance that 405
containers cannot modify the host kernel by loading new modules or by exploiting vulnerabilities 406
in the kernel. Containers can therefore reliably attest to their own state by using the hash extend 407
feature of the vTPM. 408

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

8

 409

Figure 2 – vTPM Implemented in a Kernel Module 410

The host OS is not completely trusted, and independent trust is needed on vTPM: To implement 411
trust on vTPM, a scheme using the same mechanism used for establishing hardware TPM 412
(physical TPM) trust has been referred to in [7]. In the physical TPM, the hardware platform 413
provider signs an endorsement key (EK) stating that the TPM is trustworthy. This is then 414
extended by giving each vTPM instance its own endorsement key and deploying protocols for 415
signing the endorsement keys of vTPMs using of the hardware-based TPM. 416

3.2 vTPM in a dedicated Container – Security Assurance Requirements 417

The software-based vTPM with the same functionality described in section 3.1 is built and 418
hosted in a dedicated container (referred to as vTPM management container). The schematic 419
diagram of this architectural approach is given in figure 3. This vTPM has two primary features: 420

(a) Access to hardware-based (physical) TPM 421

(b) Exposes the vTPM interface to other containers through a communication channel, which 422
can be a local UNIX domain socket or another IPC mechanism. If the IPC mechanism is 423
employed, the container using the vTPM service requires an additional piece of software 424
(denoted as “adapter” in figure 3) that presents the IPC interface as a standard character 425
device. In the container that is hosting the vTPM, a daemon will process requests from 426
other containers instead of a kernel module as it was in the previous case. 427

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

9

 428

Figure 3 – vTPM located in a dedicated Container 429

The security assurance provided by this architectural approach is the same as the one provided 430
by the host OS in the container stack. A host OS, such as Linux, provides isolation between 431
processes belonging to different containers through the Namespaces feature. If this functionality 432
works correctly, no process belonging to a different container can access the state of the vTPM 433
deployed in a dedicated container. In other words, the security of this implementation is 434
jeopardized only in the event of a container escape attack. Still, this approach provides less 435
protection than the approach in section 3.1 (vTPM in the host Kernel) since the kernel is more 436
reliable in limiting the kind of access it exposes to the userspace. 437

3.3 Leveraging Trusted Execution Support of Hardware 438

In 2015, Intel released the Software Guard eXtensions (SGX) [8] for their CPUs, which provided 439
the hardware mechanism for protecting user-level software from privileged system software 440
using the concept of secure enclaves. An enclave page cache (EPC) is a region of protected 441
physical memory where application code and data reside and are protected by CPU access 442
controls. When code and data in EPC pages are moved to DRAM, they are instantaneously 443
encrypted using an on-chip memory encryption engine (MEE) and then decrypted when they are 444
transferred from DRAM to EPC pages. The integrity of the enclave memory itself is also 445
protected by mechanisms that detect memory modifications and rollbacks. Thus, enclaves are 446
trusted execution environments provided by SGX to applications residing in the container.447

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

10

4 Assurance Requirements for Host OS Protection 448

4.1 Requirements for Generic Host OS Protection 449

Installing a container-specific OS (as opposed to a generic OS distribution), keeping OS versions 450
up-to-date and patched, logging features that can track anomalous accesses to the OS, and 451
executing privileged operations form the crux of Host OS countermeasures in the Container 452
Security Guide. In addition to the above countermeasures, it is also a good OS security practice 453
to disable all unused interfaces (Serial or Proprietary) on the host and minimize the user and 454
administrative accounts and groups. In addition to these, there are Linux-specific patches, such 455
as grsecurity [9] and PaX [10], that are available for Linux distributions. All measures combined 456
should provide the following security assurance for the host OS: 457

(a) Prevent manipulation of program execution by modifying memory (e.g., buffer overflow 458
attacks) 459

(b) Prevent attempts to reroute code to existing procedures (e.g., system calls in common 460
libraries) 461

 462
4.2 Assurance Requirements for Host OS Protection for Container Escape 463

The host OS should be protected to mitigate threats that result from container escape or breakout, 464
and all containers should be protected from other containers on the host. There are many 465
solutions available in Linux environments that enable these protections, but the three solutions 466
analyzed in this document are SELinux, AppArmor, and Seccomp, all of which utilize kernel-467
loadable modules (referred to using the acronym LKM, or Linux Kernel Module). SELinux, or 468
Security Enhanced Linux, can be used to assign labels (e.g., type) and categories to processes 469
and objects (e.g., files, sockets) and specify access restrictions (Mandatory Access Control or 470
MAC) between resources belonging to certain combinations of labels and categories. For 471
example, a specific SELinux label can be applied to a container to enforce a security policy (e.g., 472
a container hosting a Webserver can only open ports 80 or 443) [6]. AppArmor is another LKM 473
product that helps enforce mandatory access control policies by applying profiles to processes 474
that enable restriction of privileges they have at the level of Linux capabilities and file access. 475
The controls are thus data-centric and are at a coarser level of granularity compared to SELinux. 476
SECure COMPuting (Seccomp) is a module that can define and enforce an access control 477
method that enables specification of the number of system calls available for an application 478
within a container to interface with the kernel. Limiting system calls provides a restricted 479
execution environment and thus reduces the kernel attack surface. The allowed list (i.e., 480
whitelist) and prohibited list (i.e., blacklist) of system calls for a process are set up using the 481
syscall filter [11]. 482

The overall goal of the kernel-loadable modules, or LKMs, described above is to provide another 483
level of security checks on the access rights of processes and users beyond that provided by the 484
standard file-level access control (discretionary access control, or DAC) in Linux [6]. This goal 485
then drives the following security assurance requirements that need to be satisfied: 486

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

11

(a) A user authorized to run applications in the container should not be allowed access to the 487
above described kernel-loadable modules 488

(b) If using SELinux, the chcon utility used to label the files and parent folders should be 489
used at the correct levels in the file system hierarchy such that it results in least privileges 490

(c) If using Seccomp, both a syscall whitelist (a list of allowable calls) and a syscall blacklist 491
(a list of prohibited calls) should be generated. The choice of syscalls in the whitelist for 492
a container should be based on type of application(s) hosted in the container, deployment 493
situation, and container size. The syscalls included in the blacklist are for high risk, 494
possibly vulnerable, known dangerous, and explicitly disallowed ones [11]. Some 495
examples in this category include syscalls that allow for loading kernel modules, 496
rebooting, triggering mount operations, and other administrative calls. 497

(d) If using Seccomp, the sandboxes created by seccomp filters must not allow the use of the 498
ptrace command. If ptrace is allowed, the tracer can modify the process’s system call to 499
bypass the filter and therefore call blocked or restricted system calls. 500

(e) It should be possible to create container-specific profiles using a combination of 501
configuration options provided by these security modules 502

(f) A minimal configuration feature that should be available is one that allows for the 503
partitioning of containers in the host to different security domains 504

(g) It should prevent containers’ ability to mount/remount sensitive directories and/or 505
specific system directories critical to security enforcement (Cgroups, procfs, sysfs) 506

(h) It should be possible to create a security profile for the administrators of container 507
runtime using a combination of the above features508

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

12

5 Assurance Requirements for Container Runtime Configuration 509

As already described in section 2.5, all security configuration parameters for containers, except 510
for those dealing with cluster management and scheduling, are set using APIs provided by 511
container runtime. Although most of them involve Linux kernel features (Namespaces, Cgroups, 512
Capabilities) and Linux kernel modules, these tasks have been included under this section since 513
they are performed by the container runtime making syscalls to Linux host OS interfaces. The 514
overall organization of this section is as follows: 515

(a) Section 5.2 discusses configurations involving Linux’s Namespace feature, which 516
provides isolation for various resources 517

(b) Section 5.3 discusses configurations using the Cgroups feature, which is primarily 518
utilized for setting resource limits and thus preventing denial of service attacks 519

(c) Section 5.4 discusses configurations using the Capabilities feature, which enables the 520
allocation of least privileges 521

(d) Section 5.5 discusses the configurations for device isolation, which can be enabled using 522
a combination of Cgroups and kernel-loadable MAC enforcement modules 523

(e) Section 5.6 discusses configuration parameters that can be set at the time of launching the 524
containers rather than being pre-configured using the functions discussed above 525

Before analyzing these functions, the need for a configuration feature for the container runtime 526
itself is outlined in section 5.1. 527

5.1 Requirements for Secure Connection 528

Container runtime module is implemented with a daemon that listens through a Unix socket and 529
thus enables remote administration of the runtime. It is possible under certain circumstances for 530
members in the administrative group to change the Unix socket to a TCP socket [10]. Any 531
connection to this TCP socket can allow attackers to pull and run any container in privileged 532
mode, thereby giving them root access to the host. The security assurance requirement for the 533
TLS connection involves the encryption and authentication of both sides (container runtime 534
module as well as the client tool used for remote administration) of the connection before 535
establishing the TLS session. 536

5.2 Requirements for Isolation-based Configurations 537

5.2.1 Process Isolation for Containers 538

Process Isolation is a core security requirement for containers to ensure the integrity of various 539
applications running in different containers as well as in the host. A process isolation mechanism 540
in a container environment should meet the following requirements [4]: 541

(a) Ability to distinguish processes running in different containers from each other and from 542
those running on the host 543

(b) Limit cross-container process visibility 544

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

13

(c) Prevent certain type of attacks such as: 545

(i.) A process running in one container influencing a process running in another 546
container using interfaces provided by the OS for process management (e.g., 547
signals and interrupts) 548

(ii.) A process running in one container and directly accessing the memory of a 549
process running in another container by using special system calls (e.g., the 550
ptrace() allows a debugger process to attach and monitor the memory of a 551
debugged process) 552

To provide process isolation, a Linux kernel feature called process id (PID) namespace is used. 553
A PID namespace is a mechanism that groups processes and controls their ability to see (e.g., via 554
proc pseudo-filesystem) and interact (e.g., sending signals) with one another. A PID namespace 555
is created using clone() or unshare() system call and is associated with one or more containers. 556
The first process carries the id PID1, and the identifiers for subsequent processes increases 557
sequentially. Thus, the PID namespaces feature also provides PID virtualization. Two processes 558
in different PID namespaces can have the same PID. 559

5.2.2 Filesystem Isolation for Containers 560

The goal of filesystem isolation is to prevent illegitimate access to filesystem objects from one 561
container to another and from any container to the host. The filesystem is an OS interface that 562
allows processes to store and share data as well as interact with one another. Access to data for a 563
container application is determined by its access to file systems through the filesystem mount 564
points. Therefore, access to data can be restricted by making the list of filesystem mount points 565
visible and accessible to a container application. This is accomplished through the mount 566
namespace. First, a named mount namespace is created along with a set of file system mount 567
points. This mount namespace is then associated with a process that can only see and issue 568
system calls such as mount () or unmount () on those mount points. It also operates on files that 569
are within that mount namespace and accessible through those mount points. The following are 570
the security solutions for filesystem isolation and their limitations: 571

(a) All Linux-based OS virtualization solutions utilize a mount namespace that allows for the 572
separation of mounts between the containers and the host. This is intended to facilitate 573
customization of the environment visible to users and processes. This feature does not 574
guarantee data isolation between the containers since containers inherit the view of 575
filesystem mounts from their parent and can access all parts of the filesystem even though 576
each container is created within a new mount namespace. 577

(b) The typical solution for process filesystem access containment is by using the chroot () 578
system call, which binds a process to a subtree of the filesystem hierarchy. This allows a 579
container to share resources with the host by mounting them within the subtree visible 580
inside the container. However, this feature cannot provide the requisite protection in the 581
presence of privileged processes (i.e., processes with the CAP_SYS_CHROOT 582
privilege), which can escape the chroot jail due to the fact that the chroot () system call 583
only affects the pathname resolution. 584

(c) A better protection for filesystem objects is provided by modifying the root filesystem for 585
processes in a container as opposed to just modifying the root directory (which the chroot 586

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

14

() system call enables) [4]. This is enabled by the pivot_root () call, which moves the 587
mountpoint of the old root filesystem to a directory under the new root filesystem and 588
puts the new root filesystem in its place. This provides filesystem level protection since 589
the old root filesystem can be unmounted when it is carried out inside the mount 590
namespace of the container, thus rendering the host root filesystem inaccessible for 591
processes inside the container. 592

(d) Another filesystem-level protection strategy is to disallow mounting and unmounting of 593
filesystems for processes running inside a jail by default and enforce granular control of 594
this privilege using options in the allow_mount* command. 595

(e) Another mechanism to strengthen filesystem isolation is to designate a separate user 596
namespace per container, which maps the user and group ids to a lesser privileged range 597
of host UIDs and groups. 598

Because of the limitation of each of the above security solutions, the assurance requirements for 599
total filesystem-level protection involves a combination of configurations including mount 600
namespace, chroot, pivot_root, and user namespace needed for: 601

• Isolating mount points by mount namespace 602
• Changing the root directory for each process using chrooot 603
• Changing the root filesystem visible to each process (container) using pivot_root 604
• Restricting user access scope using user namespace 605

 606
5.2.3 IPC Isolation for Containers 607

Inter-process communication (IPC) isolation for containers means that processes in a container 608
must be restricted to communicate via certain IPC primitives only within that same container. An 609
IPC object (or associated mechanism) can be either a filesystem-based IPC object or non-610
filesystem-based. Filesystem-based IPC objects, such as domain sockets and named pipes, can be 611
isolated using a combination of mount namespace and pivot_root features (section 5.2.2 above) 612
since they prevent processes from accessing filesystem paths outside of their own container. 613

However, there are other IPC objects such as System V IPC objects, semaphore sets (arrays), 614
shared memory segments, and message queues. These IPC objects can be isolated in Linux with 615
the help of IPC namespaces that allow the creation of a completely disjointed set of IPC objects. 616
Each IPC namespace has its own set of System V IPC identifiers and its own POSIX message 617
queue filesystem. Objects created in an IPC namespace are visible to all other processes that are 618
members of that namespace but are not visible to processes in other IPC namespaces. IPC objects 619
accessible for a process can be listed using the ipcs command and removed using the ipcrm 620
command. 621
5.2.4 Network Isolation for Containers 622

Network level isolation for containers is provided through the network namespace feature. For 623
each network namespace that is created, a set of network devices, IP addresses, IP routing 624
tables, /proc/net directory, and port numbers can be associated with it. Each container can have 625
its own virtual network device and applications that bind to the per-namespace port number 626

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

15

space. Suitable routing rules in the host system can direct network packets to the network device 627
associated with a specific container. It is therefore possible to have, for example, multiple 628
containerized web servers on the same host system with each server bound to port 80 in its (per-629
container) network namespace. 630

Network connectivity is a core requirement for all production grade applications running on 631
containers such as web apps and multi-tier apps. The containers can be connected using a logical 632
IP network called the overlay network. The typical network configuration on a container 633
platform (consisting of containers, container runtime, host OS and the physical host) involves 634
creating a network bridge on the container host. Each container on a host is connected to that 635
bridge. A router captures Ethernet packets from its bridge-connected interface in promiscuous 636
mode, and captured packets are forwarded over the user datagram protocol (UDP) to router peers 637
running on other container hosts. These UDP ”connections” are duplex, can traverse firewalls, 638
and can be encrypted [12]. Each container is connected to the bridge using a layer 2 (link layer) 639
virtualized network interface (VNI) with a valid Link Layer address or a Network Address 640
Translation (NAT) for layer 3 connectivity. The Linux Layer 2 network isolation is based on the 641
concept of Network Namespace, which allows for the creation of several networking stacks that 642
provide a view of being completely independent of the containers [4]. 643

The simplest configuration for network isolation using layer 2 VNI involves defining a pair of 644
virtually linked Ethernet (veth) interfaces. One of the interfaces is assigned to the same network 645
namespace as the container and the other to the host namespace. A virtual link is then established 646
between the two interfaces, thus connecting the container to physical networks. There are two 647
options for enabling this link [4]: 648

(a) Network Bridge Device: The veth interface and the host physical interface are connected 649
using a virtual network bridge device. In this option, all container and host interfaces are 650
attached to the same link layer bridge and thus receive all link layer traffic on the bridge. 651

(b) Routing Tables: Another option is to utilize routing tables to forward the traffic between 652
virtual network interface (to which the container is connected) and physical network 653
interfaces (resident at the host). In this option, containers can communicate with each 654
other only when a network route is explicitly provided. 655

Security Analysis: The network isolation functionality provided by these two options forces a 656
container process to use a designated virtual network segment or a designated network route 657
(e.g., over a VPN connection). Between the two options, the routing table use presents a slightly 658
higher security assurance than the network bridge device solution since the latter allows a 659
container address to be visible to all containers connected to the bridge. 660

Another approach to provide network connectivity for containers is to use the MACVLAN 661
interface [13], which also allows each container to have its own separate link layer address. The 662
Virtual Ethernet Port Aggregator (VEPA) is the most widely used mode for configuring this 663
option for isolating the containers. However, complete assurance of network isolation can be 664
provided at the process level in containers only if the namespace-based approaches are 665
augmented with mandatory access controls (MAC) and the isolation of the process from other 666
global namespaces. 667

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

16

5.2.5 User and Group-level Isolation for Containers 668

Some processes may need some subset of root privileges. The user namespaces feature can be 669
used to restrict the privileges of some user IDs to that needed subset. The user namespace 670
isolates the user and group ID number spaces. In other words, a process's user and group IDs can 671
be different inside and outside of a user namespace. The most interesting case here is that a 672
process can have a normal unprivileged user ID outside of a user namespace while at the same 673
time having a user ID 0 inside of the namespace. This means that the process has full root 674
privileges for operations inside the user namespace, but is unprivileged for operations outside the 675
namespace. 676

Starting in Linux 3.8, unprivileged processes can create user namespaces, which opens a raft of 677
interesting new possibilities for applications. Since an otherwise unprivileged process can hold 678
root privileges inside the user namespace, unprivileged applications now have access to 679
functionality that was formerly limited to root [4]. 680

5.3 Requirements for Resource Limiting Solutions 681

The primary protection mechanism for denial-of-service attacks in Linux container environments 682
is the Cgroups feature that enables setting limits for various resources. The “limits” specification 683
feature is restricted not only to hardware artifacts such as CPU, memory, and storage, but also to 684
processes and tasks. In addition to the limits feature, Cgroups enables the designation of a 685
collection of potential “resource hogging tasks” that can be frozen by sending a SIGSTOP signal. 686
It can later be unfrozen by sending a SIGCONT signal [11]. 687

In addition to its main role of preventing against denial-of-service attacks, the Cgroups feature 688
also provides marginal network-level protection with a method (using network classifier Cgroup) 689
that tags network packets with a “classid” value. This can then be used as a parameter for 690
filtering certain packets. (The classid value can also be used for priority handling based on 691
Quality of Service (QoS) requirements, though that feature falls under performance enhancement 692
and not strictly security.) 693

The following table provides the list of hardware resources for which the Cgroups feature either 694
enables setting up of resource limits or access control. 695

Table 1– Linux Resource Control using Cgroups 696

Resource “Limit” Feature or Access Control

CPU Specific number of CPUs or amount of “CPU Shares” for a group of processes

Memory “Hard” and “Soft” memory allocation units for a group of processes

BLKIO Set disk read or write speeds, operations per second, queue controls, and wait
times on block devices designated by major and minor numbers; provides
more granular access control compared to filesystem specific controls

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

17

Devices Create a whitelist for devices based on either: (a) Type (character vs block) or
(b) Major and Minor numbers

 697

Cgroups configuration should provide the following assurances: 698

(a) It should not expose container host information, such as the kernel ring buffer via dmesg, 699
which can assist in kernel exploitation or information leaks 700

(b) It should not allow local disk access, even within user namespaces and mount restricted 701
namespaces via raw disk, device, or mknod access [11]. 702

 703
5.4 Requirements for Least Privilege Configuration for Containers 704

As already mentioned, the Capabilities feature in Linux can be used to partition the set of root 705
privileges. All container runtime products, such as LXC, Docker, and CoreOS Rkt, come with a 706
default capability profile where some capabilities for containers are enabled and some are 707
disabled [11]. Due to the privilege needs of the application running in the container, some of the 708
defaults have be modified (i.e., some capabilities that have been enabled by default need to be 709
disabled, and some capabilities disabled by default need to be enabled). However, for most 710
applications hosted in containers, the following assurance requirements must be satisfied while 711
configuring the Capabilities feature in Linux: 712

(a) Capabilities that provide the privilege to manipulate a non-name spaced kernel parameter 713
(e.g., Sys Time) will have the effect of that parameter modified not only for the container 714
but also for the host and for all other containers. Hence such capabilities (e.g., 715
CAP_SYS_TIME) should not be enabled. 716

(b) Capabilities that provide the broad set of privileges almost equal to that of the root should 717
not be enabled (e.g., CAP_SYS_ADMIN). 718

(c) There is no need to enable the capability CAP_SYS_MODULE, which allows for the 719
loading and unloading of kernel modules as this will lead to insecure privilege escalation. 720

(d) The Capabilities feature should always be used in conjunction with user namespace as 721
any privilege escalation to the process due to enabling some Capabilities by error will be 722
limited to the namespace. 723

 724
5.5 Requirements for Device Isolation solutions 725

In Linux, access to devices is enabled by device nodes, which are special files that provide an 726
interface to the host device drivers. Device nodes are separated from the rest of the filesystem, 727
and their nodes are placed in the /dev directory. These nodes are not namespace-aware. The 728
creation of device nodes is performed by the udevd daemon process issuing the mknod system 729
call. The permission for a process to create device nodes (for accessing block or character 730
devices) is provided by the CAP_SYS_MKNOD capability. Containers are given access to device 731
nodes if the corresponding devices are to be shared among containers or between different 732

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

18

containers and the host. However, device nodes are security-sensitive since they provide 733
interfaces to device drivers. These drivers present significant attack vectors because they expose 734
interfaces (particularly the storage interface) to code running in the kernel space, which may be 735
abused to gain illegitimate data access, escalate privileges, or mount other attacks. 736

One possible solution for providing device-level isolation between containers is the use of 737
“device namespace,” provided the referenced input/output (physical) devices are namespace-738
aware. Unfortunately, many Linux kernel distributions do not support the device namespace 739
feature. Where available, this feature can be used to create virtual devices for each container, 740
which can be multiplexed for access to a physical host device. Further, when Linux device 741
drivers controlling physical devices are not namespace-aware and the devices assume only one 742
controlling master host, access privileges for them are hard to securely grant for unprivileged 743
containers unless the device is used exclusively by a single container. 744

In the absence of the device namespace feature, two features are utilized for controlling access to 745
devices for containers. They are: (a) control groups, or Cgroups; and (b) Mandatory Access 746
Control (MAC) enforcement. The Cgroups subsystem for devices is used to create a whitelist, 747
formatted for devices based on type (i.e., character vs block) and device major and minor 748
numbers. The wild card “all” applies to all device types and major and minor numbers, and it is 749
typically used as a default deny before whitelisting explicit devices [11]. 750

There are two MAC enforcement methods available in Linux environments: Security-Enhanced 751
Linux (SELinux) and Apparmor. In SELinux, Multi-Level Security (MLS) labels or 752
classification labels are applied on processes and data/devices, and the system applies fine-753
grained policy and type enforcement across the different labels. AppArmor is another MAC 754
system that offers a pathname-based access control (as opposed to filesystem nodes within 755
SELinux). The restrictions can be aggregated to define a profile for a specific application, 756
process, or container. A common weakness for all MAC systems is that the controls it provides 757
can be subverted through direct execution of system calls. 758

The assurance requirements for device isolation solutions therefore are: 759

(a) All containers must be prevented from creating new device nodes, and the 760
CAP_SYS_MKNOD capability should not be enabled for them 761

(b) All mountpoints inside containers should have the nodev flag set to prevent them from 762
being used to create files to access device drivers 763

(c) All containers should only be allowed to access the following set of devices since they 764
are characterized as safe [4] due to observations given below: 765

• Purely virtual devices – such as pseudo-terminals and virtual network interfaces; the 766
security guarantee comes from the fact that these devices are explicitly created for 767
each container and not shared 768

• Stateless devices – such as random, null, and others; sharing these devices among all 769
containers and the host is safe because they are stateless 770

• User namespace-aware devices – if the device (through the device driver code) 771
supports verifying capabilities of the process in the corresponding user namespace, 772

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

19

then such a device can be safely exposed to a container since the specified restrictions 773
will be enforced 774

(d) When Cgroups and MAC enforcement systems are both used for controlling access to 775
devices, care should be taken to ensure that their respective rules do not create conflict. 776

 777
5.6 Requirements for Container Launching Options 778

Every container runtime product has a command to launch containers that carry many options. 779
The assurance requirements associated with the secure use of this command are stated as a set of 780
options that should be avoided [4]. As a best security practice, containers should not use options 781
that will enable sharing any namespaces associated with the container host when launched [11]. 782
If this is not the case, it may not only enable the container to view the resources/objects 783
associated with that namespace but also manipulate those resources/objects by subverting the 784
isolation provided by static configuration of namespaces for the container. The following table 785
provides the list of namespaces for which sharing the corresponding host counterpart should not 786
be used in the container launch options. 787

Table 2 – Prohibited Options for Container Launching 788

Namespace/ Example
Resource-Object Brief Description Security Threat

UTS All containers are assigned
their own UTS namespace
and thus have no need to
know the UTS namespace of
the host

Processes within the
container can see and
manipulate the hostname and
domain of the host

IPC/ Shared Memory
Segment

Shared Memory segments for
inter-process communication
between application modules
are set up for faster
communication as they are
faster than REST API calls

Processes within the
container can see and
manipulate host IPC object

Filesystem Host-sensitive directories
should not be mounted in
read-write mode as container
volumes

Gives containers the ability to
modify the files in those
directories with a potential to
jeopardize host security

Setting net=host in the
container launching
command

The networking mode for the
container should not be set
equal to host

This will give privileges to a
container that only a host
should have (e.g., shutting
itself down) or access to
networking services that only

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

20

Namespace/ Example
Resource-Object Brief Description Security Threat

the host needs

Publishing container ports to
the host

This is done for setting up
communication to and from
that container

The default option of
publishing to all interfaces
should not be used; by
specifying the interface that
the port should bind to
explicitly, traffic into and
from the container is
restricted to the given
interface

Inter-container
communication

If it exists, the option to
enable blanket inter-container
communication must not be
enabled; instead, explicit
communication channels
must be set up between two
containers that need to
communicate.

Any compromised container
can attack any other container
on the host

 789

In addition to container launch options that involve objects shared with the host, there are some 790
parameters exclusively applicable to the container that should be set when launching containers. 791

(a) Containers should always be launched with a specific memory limit to prevent denial-of-792
service attacks or certain applications leaking memory that may eventually consume all 793
the memory on the host 794

(b) Containers should always be launched by specifying the number of CPU shares. The 795
default value (Total CPU/number of containers) may not be sufficient for some 796
containers, resulting in denial of service. The number of CPU shares assigned to a 797
container should be such that no container can starve others with default settings. Further, 798
if there exists a group of containers that dominate others in CPU usage, then a lower 799
default value should be assigned to containers in that group to ensure fair distribution of 800
CPU shares. 801

(c) If the host OS Linux distribution supports a MAC system (e.g., SELinux), a policy 802
template should be set up, the container engine should be started with an option to 803
recognize the template, and the container launching API should have an option to 804
recognize the policy template parameter and include it as part of the launch parameter. 805

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

21

(d) Containers should be launched only with “required” capabilities by initially dropping all 806
capabilities and then adding only the required ones. The following capabilities in general 807
should not be present (i.e., NET_ADMIN, SYS_ADMIN, SYS_MODULE).808

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

22

6 Assurance Requirements for Image Integrity Solutions 809

The integrity of the container images is of paramount importance since they are converted to 810
running instances, some of which may host mission-critical applications. The image 811
countermeasures covered in the Container Security Guide include recommendations for 812
monitoring images for malware and other vulnerabilities, proper image configuration, separating 813
secrets from image files, and ensuring trust in images through cryptographic signatures and 814
regular updates. The security solutions needed for carrying out these recommendations should 815
include the following assurance requirements: 816

(a) There should exist a means to create metadata linking each image to its base image 817

(b) There should exist a feature to rebuild the image automatically if the linked base image 818
changes [6] 819

(c) When any changes are made to the base image or dependent image (e.g., patching a 820
vulnerability), changes should not be made to the running containers. Instead, the 821
corresponding image should be recreated and the container re-launched using the 822
modified image. Thus, a single master, or golden image, is to be maintained for any 823
service. 824

(d) When employing “image signing” solutions for digitally signing and uniquely identifying 825
each image, the following requirements should be met [6]: 826

1. There should be a robust key management to minimize the possibility of key 827
compromise. One approach is to have a PKI system that issues a certificate to each 828
developer exclusively for signing the image. The private key associated with this 829
certificate will then be the “signing key” that is used to sign all container images in a 830
repository. 831

2. Replay attacks must be mitigated by embedding expiration timestamps in signed 832
container images. Alternatively, a special key can be used to sign the metadata for 833
the repository, ensuring that the images in the repository do not contain stale 834
versions of the image with valid signatures. 835

(e) In addition to creating a unique identifier for an image using digital signatures, the 836
integrity of individual components of the image can be ensured by using labels such as 837
key/value pairs for each component. 838

(f) Images should be built such that the application(s) in them are not used for any privilege 839
escalation attacks. This can be achieved by disabling the chmod a-s command, which 840
removes the suid bit, or removing setuid and setgid binaries in them [6].841

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

23

7 Assurance Requirements for Image Registry Protection 842

The suggested registry countermeasures in Container Security Guide include developing secure 843
connections to registries and ensuring that they do not contain out-of-date vulnerable images by 844
pruning them out through an automated process or controlling their accidental deployment 845
through use of discrete version numbers. Some assurance requirements unrelated to these 846
countermeasures yet still critical to processes involving creating, posting, and removing images 847
into and from registries are: 848

(a) The number of accounts accessing the registry must be limited since the common threat 849
in some environments is account hijacking when a diverse set of clients has access to a 850
container registry. One such environment is the registry maintained by cloud service 851
providers who offer container services. 852

(b) The permission to create container image registries and add or remove content to 853
registries must be cryptographically protected.854

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

24

8 Assurance Requirements for Orchestration Functions 855

The use of an Orchestration platform (consisting of a suite of tools) in a containerized 856
infrastructure is intended to perform the following functions: 857

• Enable the definition of a cluster (a named group of container hosts that can be managed as a 858
single entity) and schedule containers into the cluster. The cluster configuration should 859
support specification of parameters such as the amount of CPU/Memory to reserve, the 860
number of replicas (i.e., duplicate copies of same container to be run), and the circumstances 861
under which a container should continue to run or be taken offline. 862

• Enable automated deployment of containers in various clusters/hosts (container scheduling). 863
This is achieved by integrating various automation tools to execute automation scripts as part 864
of an orchestrated workflow and to obtain feedback and status results for those automation 865
tasks. This kind of integration depends on the interfaces that the automation tools provide 866
and the type of formats (open or closed) that they follow [14]. 867

• Provisioning, or defining new container hosts and attaching them to existing clusters 868

The suggested orchestration countermeasures in the Container Security Guide include granular 869
access control of administrative actions based on hosts, containers and images as parameters, use 870
of enterprise-grade authentication services using strong credentials and directories, and isolating 871
containers to separate hosts based on the sensitivity level of the applications running in them. In 872
addition to these countermeasures, the orchestration artifacts should satisfy the following 873
security assurance requirements: 874

(a) Clusters should have capabilities for logging and monitoring the resource consumption 875
patterns of individual containers to avoid unanticipated spikes in resource usage leading 876
to non-availability of critical resources 877

(b) The Orchestration platform must be usable on containerized infrastructures with more 878
than one host OS. In other words, the orchestration tools used must be container-host OS-879
neutral. Using different tools for different container host OS platforms increases the 880
probability of denial-of-service attacks in those environments since the enterprise is not 881
able to obtain a global picture of resource usage for all running containers in the entire 882
containerized infrastructure of the enterprise. 883

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

25

9 Adverse Side effect of some Security Solutions 884

While discussing a security solution (e.g., using mount namespace) in the context of a security 885
objective (i.e., filesystem isolation), certain augmenting solutions are recommended since the 886
solution under discussion cannot meet the objective by itself. However, there are some security 887
solutions that, irrespective of any augmenting controls, impose certain limitations on the 888
functionality and performance of certain container functions. Despite their direct impact 889
affecting only functional and performance aspects, they may have an indirect impact on certain 890
security parameters. These are discussed below. 891

9.1 Resource Limiting using Cgroups 892

The use of Cgroups to limit resource access for processes/containers is included as a security 893
solution because of its potential to mitigate the chances of denial-of-service situations. The Linux 894
control groups (Cgroups) subsystem is used to group processes and manage their aggregate 895
resource consumption. It is commonly used to limit the memory and CPU consumption of 896
containers. A container can be resized by simply changing the limits of its corresponding 897
Cgroup. However, processes running inside a container are not aware of their resource limits [2]. 898
For example, a process can see all the CPUs in the system even if it is only allowed to run on a 899
subset of them; the same applies to memory. If an application attempts to automatically tune 900
itself by allocating resources based on the total system resources available, it may over-allocate 901
when running in a resource-constrained container, thus resulting in denial-of-service to other 902
applications within the same container [2]. 903

9.2 Syscall filters using Seccomp 904

Setting up system call filters (with whitelist and blacklist) using Seccomp is used as a security 905
solution since system calls are not namespace-aware (ruling out the use of the namespaces 906
feature), though in the presence of malicious processes, this can introduce accidental leakage 907
between containers. However, the choice of system calls to be allowed is based on a current set 908
of applications in the container, and this security solution has the potential to introduce 909
application incompatibility since applications can be migrated between containers for load-910
balancing reasons.911

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

26

10 Summary and Conclusions 912

The security solutions analyzed in this document can be summarized as follows: 913

(a) Providing authenticity and attestation of integrity for software components of a container 914
stack such as Linux (Host OS), container runtime, and the containers using hardware-915
based root-of-trust solutions such as TPM and vTPM 916

(b) Hardware-based protection for shielding one container from another as well as containers 917
from higher privileged software, such as Linux kernel, using the safe execution model 918
provided by hardware architecture (e.g., Intel SGX) 919

(c) Linux kernel features (Namespaces, Cgroups, Capabilities) and loadable kernel module 920
(LKM) features for protection of the Linux kernel itself and for protecting one container 921
from another 922

(d) Protection measures for container runtime, container images, container registry, and 923
container orchestration tools. 924

The conclusion from the analysis is that every security solution must satisfy some security 925
assurance requirements to effectively provide necessary and sufficient security guarantees.926

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

27

Appendix A—Acronyms 927

Selected acronyms and abbreviations used in this paper are defined below. 928

EPC

IPC

MAC

MEE

NAT

PID

PKI

SGX

TPM

UDP

UTS

VM

VNI

Enclave Page Cache

Inter-process Communication

Mandatory Access Control

Memory Encryption Engine

Network Address Translation

Process ID

Public Key Infrastructure

Software Guard eXtensions

Trusted Platform Module

User Datagram Protocol

UNIX Timesharing System

Virtual Machine

Virtualized Network Interface

929

NISTIR 8176 (DRAFT) SECURITY ASSURANCE FOR LINUX CONTAINERS

28

Appendix B—References 930

[1] NIST Special Publication (SP) 800-190, Application Container Security Guide (Draft), 931
National Institute of Standards and Technology, Gaithersburg, Maryland, April 2017. 932

 933
[2] W.Felter, A.Ferreira, R.Rajamony, J.Rubio., An Updated Performance Comparison of 934

Virtual Machines and Linux Containers, IBM Research Report, RC25482 (AUS1407-935
001), July 21, 2014. 936

 937
 [3] Practical Guide to Platform-as-a-Service, Version 1.0, Cloud Standards Customer 938

Council, http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-PaaS.pdf, 939
 September 2015. 940
 941
[4] E. Reshetova et al. Security of OS-level virtualization technologies, Cornell University 942

Library, https://arxiv.org/abs/1407.4245 943
 944
[5] T. Combe, A.Martin, R. Pietro., To Docker or Not to Docker: A Security Perspective, 945

IEEE Computer, September/October 2016, pp, 54-62. 946
 947
[6] A. Mouat, Docker Security, O’Reilly Media, 2015. 948
 949
[7] S. Hosseinzadeh, S. Lauren, and V. Leppanen, Security in container-based Virtualization 950

through vTPM. In Proceedings of IEEE/ACM 9th International Conference on Utility and 951
Cloud Computing, Shanghai, China, Pages 214-219, December 2016. 952

[8] S. Arnautov et al., SCONE: Secure Linux Containers with Intel SGX, Proceedings of the 953
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 954
’16). November 2–4, 2016 • Savannah, GA, USA 955
(https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf). 956

[9] grsecurity, https://grsecurity.net/features.php 957

[10] Home Page of The PaX Team, https://pax.grsecurity.net/ 958

[11] A. Grattafiori, Understanding and Hardening Linux Containers – Version 1.1, NCC 959
Group Whitepaper, June 2016. 960

[12] N. Kratzke, About Microservices, Containers and their Underestimated Impact on 961
Network Performance, CLOUD COMPUTING 2015: The Sixth International Conference 962
on Cloud Computing, GRIDs, and Virtualization, pp. 165-169, 2015. 963

[13] LxC project: http://linuxcontainers.org 964

[14] B.Kirsch, What to choose from the top orchestration software on the market, 965
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-966
software-on-the-market 967

 968

http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-PaaS.pdf
https://arxiv.org/abs/1407.4245
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://grsecurity.net/features.php
https://pax.grsecurity.net/
http://linuxcontainers.org/
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-software-on-the-market
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-software-on-the-market

	Draft NISTIR 8176, Security Assurance Requirements for Linux Application Container Deployments
	Executive Summary
	1 Introduction
	1.1 Scope of the Document
	1.2 Document Structure

	2 Security Solutions for Linux Application Container Stack
	2.1 Linux Kernel Feature – Namespaces
	2.2 Linux Kernel Feature – Cgroups
	2.3 Linux Kernel Feature – Capabilities
	2.4 Kernel Loadable Modules (or Linux Security Module or LSM)
	2.5 Application Container Security Configuration Process

	3 Hardware-based Security Solutions for Containers
	3.1 vTPM in the host OS Kernel – Security Assurance Requirements
	3.2 vTPM in a dedicated Container – Security Assurance Requirements
	3.3 Leveraging Trusted Execution Support of Hardware

	4 Assurance Requirements for Host OS Protection
	4.1 Requirements for Generic Host OS Protection
	4.2 Assurance Requirements for Host OS Protection for Container Escape

	5 Assurance Requirements for Container Runtime Configuration
	5.1 Requirements for Secure Connection
	5.2 Requirements for Isolation-based Configurations
	5.2.1 Process Isolation for Containers
	5.2.2 Filesystem Isolation for Containers
	5.2.3 IPC Isolation for Containers
	5.2.4 Network Isolation for Containers
	5.2.5 User and Group-level Isolation for Containers

	5.3 Requirements for Resource Limiting Solutions
	5.4 Requirements for Least Privilege Configuration for Containers
	5.5 Requirements for Device Isolation solutions
	5.6 Requirements for Container Launching Options

	6 Assurance Requirements for Image Integrity Solutions
	7 Assurance Requirements for Image Registry Protection
	8 Assurance Requirements for Orchestration Functions
	9 Adverse Side effect of some Security Solutions
	9.1 Resource Limiting using Cgroups
	9.2 Syscall filters using Seccomp

	10 Summary and Conclusions
	Appendix A— Acronyms
	Appendix B— References

